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A bstract— A generalized two-dimensionaf coupled mode analysis of

curved and chirped quasi-periodic structures in planar dielectric waveguides

has been formulated. This anafysis can be used to design curved and

chirped quasi-periti}c stmctures for obtaining phase matched interaction

between two specific goided-wave beams. Alternatively, it can be used to

cafculate the ampfitude and the phase of the diffracted guided-wave beam

for a given quasi-peridlc structure and for a specific incident beam,

including the effect of the phase mismatch. The numerical example of

linear chirped grating lenses with F= 10, f= 20 mm, A ~n = 2 pm, Amm =

4.1 pm, and grating grooved length= 65 pm is presented.

I. INTRODUCTION

c URVED and chirped gratings in optical dielectric

waveguides have been investigated by a number of

researchers to obtain reflection, focusing, collimation, cou-

pling, and Fourier analysis of guided waves [1]–[4]. These

gratings will also be useful for millimeter-wave applications

since similar dielectric wave guides are used in that region.

In the past, most of these components are used to obtain

coupling to radiation modes and reflection of guided waves

by phase matched interactions. Recently, there developed a

very strong interest in the use of chirped grating structures

for transforming one form of guided-wave beam into

another form of guided-wave beam. A typical example, a

chirped grating lens, is illustrated in Fig. 1. In this case, the

planar guided-wave beam has been diffracted into a focused

guided-wave beam with an experimental efficiency of 90

percent [2]. Chirped grating lenses are important to in-

tegrated optics and guided-wave optical signal processing

because of two reasons: 1) they are wavelength selective;

and 2) they can be batch-fabricated. However, there is a

lack of theoretical analysis that will assess the effect of the
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variation of grating patterns, that will establish their per-

formance limitations, and that will allow us to optimize the

design for different applications.

In guided-wave optics, chirped gratings are usually

fabricated by processes such as electron-beam lithography

or optical holographic exposure methods followed by etch-

ing or lift-off of the deposited film. There are severe

limitations in the grating groove patterns that can be

generated by these methods. For example, curved lines are
usually approximated by linear line segments. The chirping

rate and the curvature of the fabricated grating may be

different than the designed pattern. Even for perfectly

fabricated gratings, the phase matching conditions may be

violated where either the angle of incidence or the shape of

the input beam is deviated from its ideal alignment. For

many other applications such as a guided-wave chirped

grating analyzing lens in the RF spectrum analyzer, it is

necessary to optimize the diffraction pattern of the lens for

a range of incident angle of divergence and beam shape. In

some cases, a chirped Hating lens consisting of parallel

grooves with varying periodicity where the phase matching

condition is only partially satisfied is actually more ad-

vantageous to use than a curved grating. Therefore, the

theoretical analysis for a chirped grating analysis must be

able to take into account the effect of phase mismatch as

well as the effect of curved guided-wave front and curved

grating grooves.

The chirped grating structure that we shall analyze here

is different from the chirped grating output coupler

analyzed by Katzir et al. [5]. In Katzir’s case, they were

primarily interested in the coupling of a guided wave to the

radiation modes. Here, we are only interested in the dif-

fraction of a guided-wave beam into another guided-wave

beam. The physical ‘difference between the two cases is the

periodicity A of the grating. In our case, the A values are

sufficiently large and the K vector (K= 2 n/A ) is oriented

in such a direction that only the diffracted guided-wave

beam can satisfy approximately the phase matching condi-

tion. The substrate and air radiation modes will not be

excited (except by scattering from random defects) because

the phase mismatch for those modes is too large. Accord-
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Fig. 1. Illustration of a curved chirped grating waveguide lens.

ing to Yao [6], this assumption is valid for a limited range

of angles from the Bragg angle, e.g., 7° or 8° for a LiNb03

waveguide.

Analyses of the chirped and curved gratings have also

been made by several other researchers. Hardy and Streifer

[7] analyzed the focusing of a guided-wave Gaussian beam

by a curved grating reflector. Solymar [8] presented a

two-dimensional scalar wave theory of diffraction in volume

holograms under the phase matched condition. In those

two papers, the effect of phase mismatch was not dis-

cussed. Van Roey and Lagasse [9] discussed the analysis of

a guided wave with Gaussian intensity distribution ob-

liquely incident on a set of straight parallel-line grating

grooves with constant periodicity, resulting in a plane

diffracted beam. They considered the effect of phase mis-

match. However, the coupled-mode equations for the plane

guided-wave Fourier components are valid only for grat-

ings with constant periodicity, thus, their analyses is not

applicable to curved grating grooves.

In this paper, we have extended Solymar’s theory to

vector wave equations in the waveguide. The incident and

diffracted guided waves are allowed to have curved wave

fronts. An explicit procedure is given on how to determine

the Eikonal lines for curved grating grooves and guided
wave fronts. Following the work of Kogelnik [10], we have

also formulated our analysis so that it can take into account

a limited amount of phase mismatch by a dephasing term

in the generalized two-dimensional coupled-mode theory.

The limit of the validity within which dephasing can be

handled by this method will be discussed in Section VI.

Following Kenan [11], we will assume that the planar

waveguide supports only one discrete mode. The coupling

to the radiation mode can be neglected when the propaga-

tion wavenumber of those radiation modes are substan-

tially mismatched from the range of the propagation wave

vectors of the incident beam and the grating K vectors. In

other words, we assume that there are only two guided-wave

beams coupled to each other via the chirped or curved

grating structure. These two beams can have a variety of

horizontal variations such as plane, cylindrical, or Gauss-

ian beams, but their z variation is always given by the

mode profile of the planar waveguide. The grating will

have a localized orientation and periodicity, i.e., A. The A

varies slowly from one localized region of the grating to

another. Within a localized region, the Bragg condition of

diffraction is partially fulfilled by the A and two plane

guided-waves representing the portion of the two beams in

that localized region. The Q factor (given by 2vAed/A2 for

plane guided-waves where A, is the effective wavelength of

the guided-wave mode and d is the length of volume

interaction) is high enough so that diffractions by the

grating grooves into other guided-wave beams can be ne-

glected. Our approach is to substitute an assumed form of

the two guided-wave beams (with unspecified amplitude

and phase variations) into the vector wave equation. When

a generalized phase matching condition is satisfied, the

vector wave equation is reduced to a coupled two-

dimensional differential equation relating the amplitude

and phase variations of the two beams. The solutions of

the coupled differential equations plus boundary condi-
tions are obtained numerically on a digital computer to

give the amplitude and phase variations of the two beams

as. they emerge from the grating region. In the following

sections, we will discuss the derivation of the two-

dimensional coupled differential equations, the numerical

solutions of the coupled differential equations by means of

the mesh points along Eikonal lines and the numerical

results obtained for a few practical examples.

H. FORMULATION OF THE GENERALIZED

COUPLED-MODE ANALYSIS

The vector wave equation that we want to solve is

–V X vXE+k:cE=O (1)
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where we have assumed a exp ( jwt ) time variation, and k.

is the free-space wavenumber (k. = 2 T/A).

A. The Generalized TE and TM Modes Without the Grating

For a Iossless isotropic single mode planar waveguide,

shown in Fig. 1, without any grating structure, we can

express the total electric and magnetic field of the guided

modes as a summation of the fields of generalized TE or

TM guided-wave modes that have a z variation given by

F(z) multiplied by a function of x and y for each mode

that describes the horizontal variation of that mode. Fol-

lowing the conventional analysis of the planar waveguide,

let FE(z) be a TE eigenfunction of the ordinary differential

equation

(2)

with the conventional boundary conditions that both the

tangential electric and magnetic fields must be continuous

at all the dielectric interfaces. c(z) is the relative dielectric

constant of the waveguide and n. is the eigenvalue repre-

senting the effective index of the guided-wave mode. The

electric and magnetic field of the generalized TE mode is

EE(x, y,z)=[v x(@,y)iz)]F’ (3a)

HE(x,y,z)=~vxEE
@PoP

(3b)

where t) is a solution of the following differential equation,

representing the horizontal variation of the generalized TE

guided-wave mode

(-a2 + a2 )—+k:ng i)(x, y)=o.
ax2 ay2

(4)

Similarly, for the generalized TM mode, I“( z ) is an

eigenfunction of the differential equation

- ‘&F~(z)l+[k’-%lF~(z)=O“)d

[dz 6(Z) dZ

with

HM(x, y,z)=[VX(~ig)]F’ (6a)

EM(x, y,z)= ‘~ v XHM.
tifot(z)

(6b)

For the TM modes, I) is also a solution of (4).

When ~ takes the form A exp [ –jkon,(cos 6x+ sin f?y)],

we obtain the usual TE or TM plane guided-wave beam

propagating in a direction 6 from the x axis. In general,

when the size of the guided-wave beam is much larger than

the wavelength, we can write the generalized guided-wave

beam in the Sommerfeld-Runge form [12]

+(x, y)=A(x, y)exp[–jkone$(x, y)] (7)

where @ is a real function and A is a slow varying real

function of x and y. In order to satisfy (4), we require @

and A to satisfy the following equations:

V+. v+=l (8a)

V.(A2V$)=0 (8b)

where v 2A/k~n ~A is assumed to be approximately zero.

Clearly v @ is perpendicular to the wave front surface

defined by 1#1= constant. If we compute the time-averaged

Poynting vector of 4, it is proportional to A2 v +. Thus

(8b) is a statement of conservation of energy in the guided-

wave beam. Substituting (7) into (3a) and (6b) and neglect-

ing the term v A/( jkon ,A) with respect to v @because of

the slow variation of A, we obtain

E~ =Aexp(–jkOne@)F’(iZ X v+) (9)

EM =A exp ( –jkone@)

(lo)

B. The Vector Wave Equation Including the Grating

When there is a grating structure on a single-mode

isotropic planar waveguide, the c variation in (1) is much

more complicated. It must include the deviation of dielec-

tric constant caused by the grating. If we include the

variations of c and the effect of waveguide attenuation, we

obtain

k~c=k~[c(z)+ W(x, y) Ac(z)c’(x, y)]–2jkonea

(ha)

where a is the waveguide attenuation coefficient that may

be determined experimentally [11]. a typically consists of

the loss due to waveguide material and the radiation loss

due to random scattering loss by the defects. c’(x, y) At(z)

is the deviation of the dielectric constant from the 6(z) of

the planar waveguide produced by the grating. W(x, y) is

the window function that defines the shape of the grating

region, W(x, y)= 1 inside the grating region and W(x, y)

= O outside the grating region. We have also assumed that

the deviation of the dielectric constant caused by the

grating can be described by a z variation of At multiplied

by an x and y variation of c’. This assumption is strictly

valid only for gratings with rectangular groove profiles. In

order to demonstrate our analytical method, we will further

assume

d=gcos [r(x, y)] +higher order terms (llb)

where g is a constant, the higher order terms are neglected,

and r(x, y) describes the quasi-periodic variation of A.

When the grating is strictly periodic, this approximation is

equivalent to expanding the c‘ in Fourier series and ap-

proximating the c’ by its first Fourier term. In a quasi-

periodic structure with large chirping rate and/or curva-

ture, this approximation may not be very accurate and the

higher order terms may need to be taken into account.

C. The Two-Dimensional Generalized Coupled-Mode
Equation

Our task is to simplify (1) to a coupled-mode equation

with the c given by (11a). In the case involving two TE

beams, we assume that the total electric field is given by

the summation of the two interacting TE guided-wave
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beams

T~=P(x, y) A1exp(–jkone@l )F’(iz X V@l)

+Q(x, y) Azexp(–jkOn,@2) F~(iZXV@z). (12)

Let us consider first both the incident and diffracted beams

which arespecified such thatztl, Az, @l, and+a satisfy(8).

P and Q are unknown complex slow varying functions of x

and y. Since A,, A ~, rpl, and 42 have already been specified,

the magnitude and phase of P and Q determine the ampli-

tude and phase of the incident and diffracted beams. Let

us now substitute(11) and (12) into (1) and assume TV(X, y)

to be a window with a very large size. Q will have large

amplitude only when

02=0, –@/kOnel (13)

Equation (13) is the generalized phase matching condition

of the volume interaction. It is used to determine the

A(x, y) that will produce the highest diffraction efficiency

between the two given beams.

Let us consider next a grating structure of a given r that

had already been designed and fabricated such that (13) is

satisfied within a finite region where W= 1. Equation (1)

can be simplified in this region by substituting (13) into it

and by equating the terms that have similar exponential

spatial variations. We will also neglect the terms containing

second derivatives of the functions P and Q. After such

simplification, as illustrated in the Appendix, we obtain

VQ-7@2+CIQ+4G@JN7C$2)p=O (lob)
2

and

KE= ‘-w+m

J
(15)

4n~ F:F~ dz “
—cc

Equation (14) is the generalized coupled-mode equation for

the phase matched interaction of two TE beams within the

chirped or the curved grating region. Notice that v@, and

v +Z are parallel to the direction of propagation of the
incident and diffracted beams. Thus v O,. v @2expresses

the degradation effect of the coupling coefficient when the

polarizations of the incident and diffracted beams become
significantly different from each other. This is the case of

the coupled-mode equation with perfect phase matching.
Consider next the case where +1 of the incident TE beam

is changed slightly; for example, the incident beam may

have altered its direction of propagation. Alternatively, the

r of the fabricated grating may be slightly different than

the r that was designed to match +1 and $2 that are

solutions of (8a). In order to calculate Q for this situation,

we shall assume again the total electric field is given by

(12). Al and +1 still satisfy (8). However, we shall now only

choose A z to satisfy (8b), and we shall let @2be determined

by (13). @2 determined in this manner generally may not

satisfy (8a). The equation equivalent to (14) obtained from

(1) is now

VP. V@l+aP+j$K~(V @l. V@2)Q=0 (16a)
1

Al V4, ”V42P
vQ”v+2+aQ+jZK~

2 V42” V+2

_ kOne[l–(v@2. v@2)]Q no ~16b)

2j

Equation (16) corresponds to the coupled-mode equation

with phase mismatch, while (14) corresponds to the cou-

pled-mode equation without any phase mismatch. Clearly,

if the value of v +2. v $2 is very different than unity, the

magnitude of Q will be small. Thus 1 — v +2. v 42 is a

measure of the phase mismatch.

Similarly for the case of two TM beams, the total electric

field is

T~=P(x, y) A1exp(–jkOn,@l)

{

FM . ji31J
.—

e(z)l’– kon,t(z) dZ ‘+1
1

+Q(x, y) A2exp(–jkOn#z)

“{%(v@2”vcP2) . j%

c(z) }“- kon=c(z) az ‘+2 “

(17)

Substituting (11) and (17) into (1) and utilizing (13), we

obtain

(18a)

where

kone[l–(v+,.voz)l Q=O (18b)

2j

kog~:: Ac(z)F~FMdz

KM=

/

(19a)
4nC •mF~FMdz

—m

j+md+%%d~
NM= ‘“+m

/
F~FM dz “

—w

(19b)

Equation (18) is the generalized coupled-mode equation for

the interaction of two TM beams within the region of the

chirped or curved grating.

In isotropic single mode planar waveguides, when the

directions of propagation of incident and diffracted beams

are approximately either parallel or antiparallel to each

other, we expect very little interaction, i.e., mode conver-

sion, between a TE and a TM guided wave. Thus either
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(16) or (18) is applicable, depending on the polarization of

the incident beam.

III. EXAMPLES OF GENERALIZED PHASE-MATCHED

DIFFRACTION

Equation (13) is very useful in determining the A(x, y)
that must be used to obtain phase cumulative diffraction

from aI given incident beam into a given diffracted beam.

For example, let the incident beam be a plane guided wave

propagating in the +x direction so that Al is a constant

and @, =x= r cos (3.-Let the desired diffracted beam be a

cylindrical beam convergent toward the origin so that

AZ= constant/f- and ~z = – r at large r. Then according

to (13), r=kOner(l +cosf3). The loci of c05r= 1 is r(l +

cos O) = 2m~/kOn, where m = integers. The grating groove

corresponding to any specific m is just a parabola in the

x, y plane with r=2r0/(l+cosfl) where r. =mn/kOne.

Fig. 2(a) illustrates such a grating pattern. Notice that in

the region near the x axis, the grating grooves are ap-

,proxinaately circular with a radius of curvature, R = 2r0.

Corisider next the case of a linear chirped grating as

shown in Fig. 2(b) that has groove positions corresponding

to kon ~sin 6.(1+ cy)y = m w. A plane guided-wave is inci-

dent on the grating at the angle f31.In this case

1’=2kOnesinOO(l +cy)y

and

+l=cosfb+sin~,y.

We can calculate @2from (13) to obtain

+2=% – &
Oe

=cos Oix+sin 0Zy–2sin Oo(l+cy)y

where

c= l/(4 Xtan Oo)

X is the focal length. From the calculated +2 we conclude

that for small Ix I values, the diffracted beam is a conver-

gent beam focused on the focal point at x = X, y = – X tan

0, when (3,= O.. Here, qz does not satisfy (8a). The ampli-

tude of the diffracted beam will be very small unless

v Oz. v +2 -1. Since the value of v +2” v +Z deviates sig-
nificantly from unity when Iy I is large, the linearly chirped

grating lens is efficient only for relatively slow chirping

rate.

If we want to obtain high efficiency for a chirped grating

that has large chirping rate and small K~ (or KM) values,

the length of the grating should be long. We also need to

use a grating such that the $2 obtained from that I’ will

satisfy (8a) over the entire grating area. In that case, we

must use curved chirped gratings as illustrated in Fig. 2(c).

In this figure, the boundaries of the window function are

illustrated by the rectangular box. If the grating grooves

were extended outside of the window boundary, two typi-

cal loci of the extended grating grooves are as shown by the

dashed curves in Fig. 2(c).

In short, equation (13) is useful in two ways: a) to find

the desired grating groove shape for a given set of desired

,~Y
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Fig. 2. Examples of diffraction of guided-wave beams by chirped or
curved gratings.

incident and diffracted beams; and b) to calculate 42 and

to estimate approximately the effectiveness of the diffrac-

tion by calculating v +2 ov +2 for a given grating and a

given incident beam.

IV. SOLUTIONS OF THE COUPLED-MODE EQUATION

If either P or Q is eliminated from (16) or (18), we will

obtain a second-order differential equation. The available

analytical solutions for such a second-order differential

equation are, in general, very limited. Solymar has ob-

tained an analytical solution for the special case of a plane

wave interacting with a cylindrical wave without any phase

mismatch [13]. We have developed here a general method
for integrating numerically (16) and (18) along the Eikonal

lines. In addition, we will also establish the boundary

conditions at the edge of the window area to initiate the

numerical procedure.

Let us define an Eikonal line of the incident wave as a

curve that is tangent to the direction of propagation of the
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Fig. 3, Illustration of Eikonal lines and the boundary conditions,

incident wave and that follows the propagation of the

incident wave passing through a given point. Thus, the

Eikonal line is always parallel to v $1. The magnitude of

v +1 is unity. Hence

vP. v@l=dP/dR (20)

where dR is the incremental distance along the Eikonal

line. Several Eikonal lines of the incident beam are il-

lustrated as 11,lZ, 13, . . “ in Fig. 3. Similarly, along the

Eikonal line of the diffracted beam marked as L,, Lz, “ “ “

in Fig. 3, we obtain

vQ”v@2= (dQ/dS)(v@2v$ #2. (21)

Here the magnitude of v OZ is included explicitly in (21)

because it is not necessarily unity, and dS is the incremen-

tal distance along the Eikonal line of the diffracted beam.

The slope of the Eikonal lines for the incident and dif-

fracted beams is

tan O~=(V@l .i,)/(V@l”i X) (22a)

tanO~=(V @2.iY)/(V@2. iX). (22b)

Substituting (20) and (21) into (16), we obtain

dP _

z–
–CIP-#jKE(VO1W@2)Q

1

(23a)

–j(a+jf)Q (23b)

where

$=~o~e[l –v%”vf$21\2.

Equation (23a) implies that along a given Eikonal line 13,

the value of P at C (which is located at R= R. and S= S,

on the Eikonal lines 13 and L2 ) can be calculated numeri-

cally in terms of the value of P and Q at A for a small

Rc – R~ value by the Taylor series expansion. Similarly,

equation (23b) implies that the value of Q at C can be

expressed in terms of the value of P and Q at B for a small

Sc – S~ value by the Taylor series expansion. Mathemati-

cally, for the TE beams, equation (23) can be rewritten into

the form of a difference equation

P(Rc)–P(R~ )exp[–a(Rc–R~)]

— –4K&1W2)~Q(It,J
aA ,

.{l-exp[-a(Rc-R~ )]}

jQ(sc)–jQ(&) exp(-y)

(24)

[l-exp(-y)l (25)A
–AIK~

w“w2p(sB)_—

2 V42” V42 (a+jf)

where

y=(a+j$)(Sc –S~)/(v@2”v42)1’2.

Here, we have assumed that A, B, and C are points within

the boundary of the window function and that the change

of (V $2” V 02 ), & P, and Q from point A to C and from
point B to C is so small that the contribution due to their

variation to the right hand side of (24) and (25) is negligi-

ble. A set of equations similar to (24) and (25) can be

obtained for TM beams based on (18).

Our numerical procedure begins with the boundary con-

ditions at the edge of the window function. In terms of the

boundary lines illustrated in Fig. 3, we use P= P. and

Q= Oon the boundary line. This assumption is reasonable
because the incident beam has just reached the grating. We

use Q= O with unknown P on the upper boundary line

because the diffracted beam has just initiated at that edge

of the grating region. We will set up a mesh consisting of a

set of Eikonal lines L, intersecting a set of Eikonal lines 1~.
The spacing of the mesh points is determined by the

desired accuracy of the numerical results. We will first
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Fig. 4. Calculated ampfitude distribution of diffracted wave at the exit

boundary of the grating region.

compute the Q values of the set of mesh points along each

Ik Eikonal line in terms of the boundary value on the

P =Po, Q= O boundary followed by the computation of the

P values of these mesh points. This first set of mesh points

is indicated by circles in Fig. 3. The position of each mesh

point is calculated by solving the simultaneous equations

YC ‘Y,4 =tanO~(xc –XA).

yc–y~=tand,, (xc-x~)
#

where (xc, yc) is the position of the mesh point to be

calculated and (XA, y~ ) and (XB, y~ ) are the known posi-

tions of the mesh points calculated previously or on the

bounclary. tan 13~and tan 6~ are given by (22). This process

is repeated for the set of mesh points adjacent to the set of

mesh points where P and Q values have just been calcu-

lated. The final set of mesh points are the points of the

intersection of the Eikonal lines with the exit boundary of

the window function W.

V. NUMERICAL RESULTS FROM A SELECTED

EXAMPLE

Although this method has been applied by us to calcu-

late the performance of many devices such as the curved

grating. lens, linear chirped grating lens, curved chirped

grating reflector, etc., the demonstration of this method

will cmly be presented here by showing the numerical

results obtained in a specific example. In this example, we

calculate the curved chirped grating lens diffracting an

incident Gaussian guided-wave beam into a focused guided-

wave beam with a’ focal point at x= O, y= O, as illustrated

in Fig. 2(c). In this case

A1=l

A=0.6328X10-6m

W=[u(y–0.002)–u( y–O.004)]

.[u(x+20.0325X 10-3)

–U(X+ 19.9675X10-3)]

~o=l.293exp [–(y–3X 10-3 )2cos20,/10-6]

A2 + l/rl/2

% =cos~lx+sineiy

r=kO~e~(l+cOse)

~=lom–l

where u is a unit step function, U(v)= O for v< O and

u(0)=l for v>O. We have used a C(Z) and Ac(z) for a

glass waveguide such that ne = 1.53 and K~ = 0.024, pm-1

and we have chosen the Eikonal lines to be approximately

1 pm apart.

Fig. 4 shows the calculated value of the amplitude of Q

at the exit boundary, x= – 19.9675X 10’3 m and 0.002 <y
<().0()4 m, for four different cases, 131= O in case a, tli = 0.01

radian in case b, f3i= 0.02 radian in case c, and 191=0.03

radian in case d. Fig. 5 shows the calculated phase ofjQ at

the same boundary. Notice that the phase of jQ for case a

is always zero because the grating is designed to provide

perfect phase match for that case. As the 6, is deviated

further away from the phase matched condition, the phase
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5. Calculated phase deviation of the diffracted wave at the exit
boundary of the grating region

of jQ changes much more rapidly. Figs. 6 to 9 show the

calculated amplitude of the electric field as a function of y

in the x= O plane, i.e., the focal plane. Such an electric field

has been calculated by means of the Kirchhoff’s diffraction

integral using the Fresnel approximation. Notice the de-

gradation of the diffracted pattern as the 0, moves away

from the phase matching angle.

VI. DISCUSSION

We have presented in this paper a generalized two-

dimensional coupled-mode analysis of two generalized

guided-wave beams in a planar waveguide coupled by a

chirped and curved grating. From this analysis, we have

obtained the generalized phase matching condition that

can be used to design the grating groove shape for any two

given guided-wave beams. Alternatively, we can use the

coupled-mode equation to calculate the phase and ampli-

tude distributions of the two beams when there is a phase

mismatch. From the calculated amplitude and phase distri-

bution, we can obtain information such as the diffracted

field patterns, the diffraction efficiency, the angular range

of the incident beam propagation within which effective

diffraction can take place, the effect of changing the beam

shape of the incident beam (e.g., a Gaussian beam instead

of a plane wave), and the effect of changing the grating

parameter (e.g., changing the K coefficient or the curva-

ture).

However, this analysis has several limitations. First, we

have confined our analysis to the case of a single mode

waveguide with negligible radiation loss. Secondly, only a

limited amount of mismatch can be handled by this analy-

sis. This is because we have considered the amplitude

functions P and Q to be slow varying functions within a

wavelength of the guided mode, so that terms containing

the second derivatives of P and Q can be neglected in (16)

and (18). It can be shown that the second derivatives of P

and Q are negligible whenever [1 – ( v +T. v +Z)] <1. In

most cases, this is not a severe restriction. In all the

examples of the grating lens that we have calculated so far,

[1 – (V Oz” v 02)] has not exceeded 10 ‘2. On the other
hand, we have found that the condition for negli#ble

excitation of the substrate radiation mode by the chirped

grating structure is often violated before the violation of

this condition.

This analysis has already been applied to calculate the

performance of Fresnel and chirped grating lenses. Experi-

mental work to verify the calculated results is currently

being undertaken in our laboratory. It will be published

elsewhere.

APPENDIX A:

MATHEMATICAL STEPSIN THE

DERIVATION OF THE COUPLED-MODE EQUATION

From (2), (5), (8b), (9), and (10), we obtain

{V XV X[P(x, y)EE]}iE

=[Pk:6(z)-Pk;n: (l-v+. v@)

+2jkone(V1’. V@)]~E (Al)

{vxvx[P(x, y)EM]}

[
= Pk&(z)-Pk&:(l -v@. v@)

(
+j /con, + %VVP”V4EM

where

i~ =E~ /E~.

(A2)
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d I ,
-30.0 -20.0 -io. o o 10.0 20.0 30.0

Position Relative to the Geometrical Focus (in pm)

Fig. 6. Diffraction pattern in the focal plane (case a) for Gaussian beam
with angle of incidence at O rad.

I I

-30.0 -20.0 -10.0 0 10.0 20.0 30.0

Position Relative to the Geometrical Focus (in pm)

Fig. 7. Diffraction pattern in the focaf plane (case b) for Gaussian beam
with angle of incidence at 0.01 rad.

We have neglected terms of the magnitude of

(v A/kon#) and [1 – VO” v@](dFM/dz)/kon#M. Sub-
stituting(12) into (l), making use of (13) and (Al), equat-

20

“d
.

.:
k

5

-2

Position Relative to the Geometrical Focus (in urn)

Diffraction pattern in the focal plane (case c) for Gaussian beam
with angle of incidence at 0.02 rad.

) -20.0 -10.0 0 10.0 20.0 30.0

Position Relative to the Geometrical Focus (in

Fig. 9. Diffraction pattemin the focal plane (case d) for Gaussimbeam
with angle of incidence at 0.03 rad.

ing the terms that have the same x and y variations in the

exponential factor, neglecting the terms containing second

derivatives of functions P and Q as they are considered to
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be higher order small quantities, we obtain for the gener-

alized TE guided-wave beams

(izxvc#), )(v P.v+, +aP)AIF’+(izxv+2)

().i%.—
4n,

W(X> y) QAc(z)A#”

+ vector quantities perpendicular to (i, X v @l )

=0 (A3)

()-ihg.—
4n,

w’(x, y) PAC(Z)AIF’

+ vector quantities perpendicular to (i, X v Oz)

=0. (A4)

Here, g is the coefficient given in (1 lb) and we have

assumed that the size of the area within which the window

function is not zero is large so that terms of the same x and

y variation in the exponential factor must be equal to each

other. Following Kogelnik [10] and Kenan [11], forming an

inner product between the quantities in (A3) and F“( i= X

v @l) and integrating with respect to dz from z= – co to
z= + CO, we obtain (16a) when TV(X, y)= 1. Forming an

inner product between the quantities in (A4) and F’(i, X

v @2) and integrating with respect to dz from z= – m to
z= + co, we obtain (16b) when TV(X, y)= 1.

A similar procedure is used to derive equation (18) for

the generalized TM guided-wave beams, where

KM=-@::’+F~FM
+*(W(%W-J+}
{[/ 4n,l~~ F~FM

+&(%) (%%)]’z}

As the second term is much smaller than the first term, we

can use the approximate expression as given in (19a).
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Aperture Coupling Between
Lines

Dielectric Image
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A bstract-Apertrrre coupfing between dielectric image lines is used to In this paper a design technique for directional couplers
develop a design technique for directional couplers at millimeter-wave

frequencies. Expressions for coupling coefficients and rfirectivity, employ-
using dielectric image lines is given. Initially, a brief account

ing coupling between image lines through apertures in the common ground of transmission-line properties of the dielectric image line

plane are developed. The design procedure is illustrated by application to is presented together with coupling between image lines

10-, 20-, and 30-dB directional couplers in rectangular image lines with through apertures in the common ground plane. Expres-
circular aperture coupling. sions are derived for the directivity and coupling coeffi-

1. INTRODUCTION
cients and design curves are presented. Finally, the design

procedure developed is illustrated by application to the

D
IELECTRIC IMAGE lines and their applications in design of 10-, 20-, and 30-dB directional couplers.

active and passive devices for millimeter-wave in-

tegrated circuits have been reported in the literature [1]-[9]. II. IMAGE-LINE PROPERTIES

The geometry of an image line, as shown in IFig. 1,
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comprises a rectangular dielectric slab of relative permittiv-
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and lIX. Omitting the t–z dependence, exp [j(cot -- lczz)],
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