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Abstract— A generalized two-dimensional coupled mode analysis of
curved and chirped quasi-periodic structures in planar dielectric waveguides
has been formulated. This analysis can be used to design curved and
chirped quasi-periodic structures for obtaining phase matched interaction
between two specific guided-wave beams. Alternatively, it can be used to

calculate the amplitude and the phase of the diffracted guided-wave beam '

for a given quasi-periodic structure and for a specific incident beam,
including the effect of the phase mismatch. The numerical example of
linear chirped grating lenses with F=10, /=20 mm, A, =2 pm, A =
4.1 pm, and grating grooved length=65 pm is presented.

J. INTRODUCTION

URVED and chirped gratings in optical dielectric

waveguides have been investigated by a number of
researchers to obtain reflection, focusing, collimation, cou-
pling, and Fourier analysis of guided waves [1]-[4]. These
gratings will also be useful for millimeter-wave applications
since similar dielectric wave guides are used in that region.
In the past, most of these components are used to obtain
coupling to radiation modes and reflection of guided waves
by phase matched interactions. Recently, there developed a
very strong interest in the use of chirped grating structures
for transforming one form of guided-wave beam into
another form of guided-wave beam. A typical example, a
chirped grating lens, is illustrated in Fig. 1. In this case, the
planar guided-wave beam has been diffracted into a focused
guided-wave beam with an experimental efficiency of 90
percent [2]. Chirped grating lenses are important to in-
tegrated optics and guided-wave optical signal processing
because of two reasons: 1) they are wavelength selective;
and 2) they can be batch-fabricated. However, there is a
lack of theoretical analysis that will assess the effect of the
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variation of grating patterns, that will establish their per-
formance limitations, and that will allow us to optimize the
design for different applications.

In guided-wave optics, chirped gratings are usually
fabricated by processes such as electron-beam lithography
or optical holographic exposure methods followed by etch-
ing or lift-off of the deposited film. There are severe
limitations in the grating groove patterns that can be
generated by these methods. For example, curved lines are
usually approximated by linear line segments. The chirping
rate and the curvature of the fabricated grating may be
different than the designed pattern. Even for perfectly
fabricated gratings, the phase matching conditions may be
violated where either the angle of incidence or the shape of
the input beam is deviated from its ideal alignment. For
many other applications such as a guided-wave chirped
grating analyzing lens in the RF spectrum analyzer, it is
necessary to optimize the diffraction pattern of the lens for
a range of incident angle of divergence and beam shape. In
some cases, a chirped grating lens consisting of parallel
grooves with varying periodicity where the phase matching
condition is only partially satisfied is actually more ad-
vantageous to use than a curved grating. Therefore, the
theoretical analysis for a chirped grating analysis must be
able to take into account the effect of phase mismatch as
well as the effect of curved guided-wave front and curved
grating grooves.

The chirped grating structure that we shall analyze here
is different from the chirped grating output coupler
analyzed by Katzir et al. [5]. In Katzir’s case, they were
primarily interested in the coupling of a guided wave to the
radiation modes. Here, we are only interested in the dif-
fraction of a guided-wave beam into another guided-wave
beam. The physical difference between the two cases is the
periodicity A of the grating. In our case, the A values are
sufficiently large and the K vector (K=2x/A) is oriented
in such a direction that only the diffracted guided-wave
beam can satisfy approximately the phase matching condi-
tion. The substrate and air radiation modes will not be
excited (except by scattering from random defects) because
the phase mismatch for those modes is too large. Accord-

0018-9480 /81 /0800-0881800.75 ©1981 IEEE



882

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 9, SEPTEMBER 1981

curved grating grooves

_—
_ .
incident S
guided-wave <
A
beam % \< focused /
diffracted
. % f\ beam
_7/ d /‘
focus
waveguide
substrate
Fig. 1. Illustration of a curved chirped grating waveguide lens.

ing to Yao [6], this assumption is valid for a limited range
of angles from the Bragg angle, e.g., 7° or 8° for a LiINbO;
waveguide.

Analyses of the chirped and curved gratings have also
been made by several other researchers. Hardy and Streifer
[7] analyzed the focusing of a guided-wave Gaussian beam
by a curved grating reflector. Solymar [8] presented a
two-dimensional scalar wave theory of diffraction in volume
holograms under the phase matched condition. In those
two papers, the effect of phase mismatch was not dis-
cussed. Van Roey and Lagasse [9] discussed the analysis of
a guided wave with Gaussian intensity distribution ob-
liquely incident on a set of straight parallel-line grating
grooves with constant periodicity, resulting in a plane
diffracted beam. They considered the effect of phase mis-
match. However, the coupled-mode equations for the plane
guided-wave Fourier components are valid only for grat-
ings with constant periodicity, thus, their analyses is not
applicable to curved grating grooves.

In this paper, we have extended Solymar’s theory to
vector wave equations in the waveguide. The incident and
diffracted guided waves are allowed to have curved wave
fronts. An explicit procedure is given on how to determine
the Eikonal lines for curved grating grooves and guided
wave fronts. Following the work of Kogelnik [10], we have
aiso formulated our analysis so that it can take into account
a limited amount of phase mismatch by a dephasing term
in the generalized two-dimensional coupled-mode theory.
The limit of the validity within which dephasing can be
handled by this method will be discussed in Section VI.

Following Kenan [11], we will assume that the planar
waveguide supports only one discrete mode. The coupling
to the radiation mode can be neglected when the propaga-
tion wavenumber of those radiation modes are substan-
tially mismatched from the range of the propagation wave
vectors of the incident beam and the grating K vectors. In
other words, we assume that there are only two guided-wave

beams coupled to each other via the chirped or curved
grating structure. These two beams can have a variety of
horizontal variations such as plane, cylindrical, or Gauss-
ian beams, but their z variation is always given by the
mode profile of the planar waveguide. The grating will
have a localized orientation and periodicity, i.e., A. The A
varies slowly from one localized region of the grating to
another. Within a localized region, the Bragg condition of
diffraction is partially fulfilled by the A and two plane
guided-waves representing the portion of the two beams in
that localized region. The Q factor (given by 2o ,d/A? for
plane guided-waves where A, is the effective wavelength of
the guided-wave mode and 4 is the length of volume
interaction) is high enough so that diffractions by the
grating grooves into other guided-wave beams can be ne-
glected. Our approach is to substitute an assumed form of
the two guided-wave beams (with unspecified amplitude
and phase variations) into the vector wave equation. When
a generalized phase matching condition is satisfied, the
vector wave equation is reduced to a coupled two-
dimensional differential equation relating the amplitude
and phase variations of the two beams. The solutions of
the coupled differential equations plus boundary condi-
tions are obtained numerically on a digital computer to
give the amplitude and phase variations of the two beams
as- they emerge from the grating region. In the following
sections, we will discuss the derivation of the two-
dimensional coupled differential equations, the numerical
solutions of the coupled differential equations by means of
the mesh points along FEikonal lines and the numerical
results obtained for a few practical examples.

II. FORMULATION OF THE GENERALIZED

COUPLED-MODE ANALYSIS

The vector wave equation that we want to solve is

—VXVXE+k¥E=0

(1)
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where we have assumed a exp (jwt?) time variation, and k,
is the free-space wavenumber (ko =27 /A).

A. The Generalized TE and TM Modes Without the Grating

For a lossless isotropic single mode planar waveguide,
shown in Fig. 1, without any grating structure, we can
express the total electric and magnetic field of the guided
modes as a summation of the fields of generalized TE or
TM guided-wave modes that have a z variation given by
F(z) multiplied by a function of x and y for each mode
that describes the horizontal variation of that mode. Fol-
lowing the conventional analysis of the planar waveguide,
let Fy(z) be a TE eigenfunction of the ordinary differential
equation

2 @)

with the conventional boundary condltlons that both the
tangential electric and magnetic fields must be continuous
at all the dielectric interfaces. e(z) is the relative dielectric
constant of the waveguide and n, is the eigenvalue repre-
senting the effective index of the guided-wave mode. The
electric and magnetic field of the generalized TE mode is

EE(x’y’Z):[VX(\P(-x’y)iz)]FE (3&)

Hp(x, )&Z)—WV E; (3b)

+k2e(z)—k2n2 |Fz(z)=0

where ¢ is a solution of the following differential equation,

representing the horizontal variation of the generalized TE
guided-wave mode

32 32

Similarly, for the generalized TM mode, Fy(z) is an
eigenfunction of the differential equation

%[R%%FM(Z)}Jr k(2 ;

)¢(x,y>=o.

kg~ Fy(z)=0 (5)

with
(6a)
(6b)

HM(x,y,z)z[vx(¢i )] Fs

EM(xay’Z) V><HM

we e( )
For the TM modes, ¢ is also a solution of (4).

When ¢ takes the form Aexp[—jk,n (cosfx+sindy)],
we obtain the usual TE or TM plane guided-wave beam
propagating in a direction § from the x axis. In general,
when the size of the guided-wave beam is much larger than
the wavelength, we can write the generalized guided-wave
beam in the Sommerfeld— Runge form [12]

Y(x, y)=A(x, y)exp[—jkon o(x, y)] (7)

where ¢ is a real function and A is a slow varying real
function of x and y. In order to satisfy (4), we require ¢
and A4 to satisfy the following equations:

Vo veo=1
v (42v¢)=0

(8a)
(8b)
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where v 24 /k2n%A is assumed to be approximately zero.
Clearly v ¢ is perpendicular to the wave front surface
defined by ¢=constant. If we compute the time-averaged
Poynting vector of ¢, it is proportional to A%V ¢. Thus
(8b) is a statement of conservation of energy in the guided-
wave beam. Substituting (7) into (3a) and (6b) and neglect-
ing the term v A4 /(jkyn,A) with respect to Vv ¢ because of
the slow variation of 4, we obtain

EE =4 exp(-jkOne(P)FE(iz X V¢)
Ey =Aexp(—jkon $)

N fuVe- Vel

) "

o J 9y
konge(z) 9z V(P}'

B. The Vector Wave Equation Including the Grating

(©)

(10)

When there is a grating structure on a single-mode
isotropic planar waveguide, the e variation in (1) is much
more complicated. It must include the deviation of dielec-
tric constant caused by the grating. If we include the
variations of € and the effect of waveguide attenuation, we
obtain

ke=ki[e(z)+W(x, y)Ae(z)e’()e, )] —2jle0nea
(11a)

where a is the waveguide attenuation coefficient that may
be determined experimentally [11]. « typically consists of
the loss due to waveguide material and the radiation loss
due to random scattering loss by the defects. €’(x, y)Ae(z)
is the deviation of the dielectric constant from the e(z) of
the planar waveguide produced by the grating. W(x, y) is
the window function that defines the shape of the grating
region, W(x, y)=1 inside the grating region and W(x, y)
={) outside the grating region. We have also assumed that
the deviation of the dielectric constant caused by the
grating can be described by a z variation of Ae multiplied
by an x and y variation of €. This assumption is strictly
valid only for gratings with rectangular groove profiles. In
order to demonstrate our analytical method, we will further
assume

¢’=gcos[T(x, y)] +higher order terms ~ (11b)

where g is a constant, the higher order terms are neglected,
and I'(x, y) describes the quasi-periodic variation of A.
When the grating is strictly periodic, this approximation is
equivalent to expanding the ¢’ in Fourier series and ap-
proximating the €’ by its first Fourier term. In a quasi-
periodic structure with large chirping rate and/or curva-
ture, this approximation may not be very accurate and the
higher order terms may need to be taken into account.

C. The Two-Dimensional Generalized Coupled-Mode
Equation

Our task is to simplify (1) to a coupled-mode equation
with the € given by (11a). In the case involving two TE
beams, we assume that the total electric field is given by
the summation of the two interacting TE guided-wave
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beams
T =P(x, y)A exp (—jkon $1) Fp(i, X V ¢,)

+Q(x, y)Ayexp (—jkon o, ) Fg(i, X Véy). (12)
Let us consider first both the incident and diffracted beams
which are specified such that 4,, 4,, ¢,, and ¢, satisfy (8).
P and Q are unknown complex slow varying functions of x
and y. Since 4,, A,, ¢,, and ¢, have already been specified,
the magnitude and phase of P and Q determine the ampli-
tude and phase of the incident and diffracted beams. Let
us now substitute (11) and (12) into (1) and assume W(x, y)
to be a window with a very large size. Q will have large
amplitude only when

¢, =¢; —(I'/kon,). (13)

Equation (13) is the generalized phase matching condition
of the volume interaction. It is used to determine the
A(x, y) that will produce the highest diffraction efficiency
between the two given beams.

Let us consider next a grating structure of a given I that
had already been designed and fabricated such that (13) is
satisfied within a finite region where W=1. Equation (1)
can be simplified in this region by substituting (13) into it
and by equating the terms that have similar exponential
spatial variations. We will also neglect the terms containing
second derivatives of the functions P and Q. After such
simplification, as illustrated in the Appendix, we obtain

A
VP'V¢1+“P+jj4_2KE(V¢1'V¢2)Q:O (14a)
1

Ay
VOV TaQF 7 Ky(V -V $;)P=0 (14b)
and

+ o0
kogf Ae(z)FiFpdz
Ky=—=2

(15)

F®
4n, FiF.dz
— o0

Equation (14) is the generalized coupled-mode equation for
the phase matched interaction of two TE beams within the
chirped or the curved grating region. Notice that v ¢, and
V ¢, are parallel to the direction of propagation of the
incident and diffracted beams. Thus v ¢,- v ¢, expresses
the degradation effect of the coupling coefficient when the
polarizations of the incident and diffracted beams become
significantly different from each other. This is the case of
the coupled-mode equation with perfect phase matching.
Consider next the case where ¢, of the incident TE beam
is changed slightly; for example, the incident beam may
have altered its direction of propagation. Alternatively, the
I" of the fabricated grating may be slightly different than
the I' that was designed to match ¢, and ¢, that are
solutions of (8a). In order to calculate Q for this situation,
we shall assume again the total electric field is given by
(12). 4, and ¢, still satisfy (8). However, we shall now only
choose A4, to satisty (8b), and we shall let ¢, be determined
by (13). ¢, determined in this manner generally may not
satisfy (8a). The equation equivalent to (14) obtained from
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(1) is now
A,
VP-V¢1+(XP+]*A—KE(V¢1'V¢2)Q=O (16a)
1

Vo Vo,
Evé, Vo,

_kon [1-(vVér V)]0
2j
Equation (16) corresponds to the coupled-mode equation
with phase mismatch, while (14) corresponds to the cou-
pled-mode equation without any phase mismatch. Clearly,
if the value of Vv ¢,- V ¢, is very different than unity, the
magnitude of Q will be small. Thus 11—V ¢,- Vo, is a
measure of the phase mismatch.
Similarly for the case of two TM beams, the total electric
field is
Ty =P(x, y)A exp(—jkon ;)
Fy . j 0F,,
{ €(z)'? konge(z) oz Vol
+ Q(x, y)AZCXp (_jk0n9¢2)
) FM(V¢2'V¢2)I. _ J 0F,,
e(z) Z kong(z) 9z Vo
(17)

Substituting (11) and (17) into (1) and utilizing (13), we
obtain

A
VQ v +aQ+j LK
2

=0. (16b)

1 Ny | VPV aP A,
=1+ 22 +j22K,0=0
2( n’ )V¢2'V¢2 Vo, Vo, JAl e
(18a)
1{. N, A, K, P
1+ 90 v, taQ+jot — M
2( n? )VQ Vo2 a0 ]Az Vo, Vo,

_ kone[l_(V ¢, V¢z)]

5 0=0 (18b)
where
+co
kogfy Ae(z)F:F, dz

Ky = — (19a)

an [ FyFydz

+ o0

[ e(2)Fy Ry

Ny =2 (19b)
f, F%F, dz

Equation (18) is the generalized coupled-mode equation for
the interaction of two TM beams within the region of the
chirped or curved grating.

In isotropic single mode planar waveguides, when the
directions of propagation of incident and diffracted beams
are approximately either parallel or antiparallel to each
other, we expect very little interaction, i.e., mode conver-
sion, between a TE and a TM guided wave. Thus either
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(16) or (18) is applicable, depending on the polarization of
the incident beam.

1II. ExAMPLES OF GENERALIZED PHASE-MATCHED

DIFFRACTION

Equation (13) is very useful in determining the A(x, y)
that must be used to obtain phase cumulative diffraction
from a given incident beam into a given diffracted beam.
For example, let the incident beam be a plane guided wave
propagating in the +x direction so that 4, is a constant
and ¢, =x=rcos§. Let the desired diffracted beam be a
cylindrical beam convergent toward the origin so that
A, =constant /¥ and ¢, = —r at large . Then according
to (13), I'=kyn r(1+cos ). The loci of cosI'=1 is r(1+
cos@)y=2mm /kyn, where m=integers. The grating groove
corrésponding to any specific m is just a parabola in the
x, y plane with r=2r, /(1+cos8) where ry,=ma/kyn,.
Fig. 2(a) illustrates such a grating pattern. Notice that in
the region near the x axis, the grating grooves are ap-
_proximately circular with a radius of curvature, R=2r,.

Consider next the case of a linear chirped grating as
shown in Fig. 2(b) that has groove positions corresponding
to kon, sinfy(1+¢y)y=ma. A plane guided-wave is inci-
dent on the grating at the angle §,. In this case

['=2kgyn, sinfy(1+cy)y
and
¢, =cosfl x+sinb,y.

We can calculate ¢, from (13) to obtain

T
b= — 77—

kon,
=cos f,x+sinf,y—2sinfy(1+cy)y

where
c=1/(4Xtand,)

X is the focal length. From the calculated ¢, we conclude
that for small | x| values, the diffracted beam is a conver-
gent beam focused on the focal point at x=X, y=— X tan
0, when 6, =0,. Here, ¢, does not satisfy (8a). The ampli-
tude of the diffracted beam will be very small unless
Y ¢, V ¢, ~ 1. Since the value of V ¢,V ¢, deviates sig-
nificantly from unity when | y| is large, the linearly chirped
grating lens is efficient only for relatively slow chirping
rate.

If we want to obtain high efficiency for a chirped grating
that has large chirping rate and small K (or K,,) values,
the length of the grating should be long. We also need to
use a grating such that the ¢, obtained from that I' will
satisfy (8a) over the entire grating area. In that case, we
must use curved chirped gratings as illustrated in Fig. 2(c).
In this figure, the boundaries of the window function are
illustrated by the rectangular box. If the grating grooves
were extended outside of the window boundary, two typi-
cal loci of the extended grating grooves are as shown by the
dashed curves in Fig. 2(c).

In short, equation (13) is useful in two ways: a) to find
the desired grating groove shape for a given set of desired
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Fig. 2. Examples of diffraction of guided-wave beams by chirped or
curved gratings.

incident and diffracted beams; and b) to calculate ¢, and
to estimate approximately the effectiveness of the diffrac-
tion by calculating vV ¢, V¢, for a given grating and a
given incident beam.

IV. SoLuUTIONS OF THE COUPLED-MODE EQUATION

If either P or Q is eliminated from (16) or (18), we will
obtain a second-order differential equation. The available
analytical solutions for such a second-order differential
equation are, in general, very limited. Solymar has ob-
tained an analytical solution for the special case of a plane
wave interacting with a cylindrical wave without any phase
mismatch [13]. We have developed here a general method
for integrating numerically (16) and (18) along the Eikonal
lines. In addition, we will also establish the boundary
conditions at the edge of the window area to initiate the
numerical procedure.

Let us define an Eikonal line of the incident wave as a
curve that is tangent to the direction of propagation of the
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boundary of the

B grating, Q = O
13
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= x
boundary of the \
grating, P = PO, Q=0 diffracted beam
Fig. 3. Illustration of Eikonal lines and the boundary conditions.

incident wave and that follows the propagation of the
incident wave passing through a given point. Thus, the
Eikonal line is always parallel to v ¢,. The magnitude of
¥ ¢, is unity. Hence

v P-v¢,=dP/dR (20)

where dR is the incremental distance along the Eikonal
line. Several Eikonal lines of the incident beam are il-
lustrated as /,,1,,/,,-+- in Fig. 3. Similarly, along the
Fikonal line of the diffracted beam marked as L, L, - - -
in Fig. 3, we obtain

VO Ve, =(dQ/as) (v, ve,) A (21)

Here the magnitude of V ¢, is included explicitly in (21)
because it is not necessarily unity, and dS is the incremen-
tal distance along the Fikonal line of the diffracted beam.
The slope of the Eikonal lines for the incident and dif-
fracted beams is

taneR:(V ¢1'iy)/(v é1°i,) (22a)
tanfs =(V ¢4,)/(V ¢y-1). (22b)
Substituting (20) and (21) into (16), we obtain
dP A, .
4R —aP— A_?JKE(V(PI V)0
(23a)
. d A Vo -V
HV6yv9,) P =21y pY O Ve

dS ~ A, F V¢, Vo,
—j(atjé)Q (23b)
where
E=kon [1=V ¢, V,1/2.

Equation (23a) implies that along a given Eikonal line /5,
the value of P at C (which is located at R=R_ and S=S§,
on the Eikonal lines /; and L,) can be calculated numeri-
cally in terms of the value of P and Q at 4 for a small
R.—R value by the Taylor series expansion. Similarly,

equation (23b) implies that the value of Q at C can be
expressed in terms of the value of P and Q at B for a small
Sc —Sp value by the Taylor series expansion. Mathemati-
cally, for the TE beams, equation (23) can be rewritten into
the form of a difference equation

P(Rc)_P(RA)eXP["a(Rc_RA)]

4,

ad,
~{l—exp[—a(RC—RA)]}
JO(Sc)—jQ(Sp)exp(—v)

_Ad, Vérve,
A4, Fve, v,

K (Vo ve,)j0(Ry)

(24)

[1—exp(—v)]

PUSs) —(ar8)

(25)
where
y=(a+jE)(Sc —Sg)/(V ¢, V¢2)1/2'

Here, we have assumed that 4, B, and C are points within
the boundary of the window function and that the change
of (Vo, -V é,), & P, and Q from point 4 to C and from
point B to C is so small that the contribution due to their
variation to the right hand side of (24) and (25) is negligi-
ble. A set of equations similar to (24) and (25) can be
obtained for TM beams based on (138).

Our numerical procedure begins with the boundary con-
ditions at the edge of the window function. In terms of the
boundary lines illustrated in Fig. 3, we use P=P, and
Q=0 on the boundary line. This assumption is reasonable
because the incident beam has just reached the grating. We
use 0=0 with unknown P on the upper boundary line
because the diffracted beam has just initiated at that edge
of the grating region. We will set up a mesh consisting of a
set of Eikonal lines L, intersecting a set of Eikonal lines /.
The spacing of the mesh points is determined by the
desired accuracy of the numerical results. We will first
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Fig. 4. Calculated amplitude distribution of diffracted wave at the exit
boundary of the grating region.

compute the Q values of the set of mesh points along each
[, Eikonal line in terms of the boundary value on the
P=P,, 0=0 boundary followed by the computation of the
P values of these mesh points. This first set of mesh points
is indicated by circles in Fig. 3. The position of each mesh
point is calculated by solving the simultaneous equations

Yc—Va =tan0R(xC ”‘XA)’

Yc VB :tanas(xc‘xza) ,

where (x., yo) is the position of the mesh point to be
calculated and (x4, y,) and (xj, y5) are the known posi-
tions of the mesh points calculated previously or on the
boundary. tan @, and tané, are given by (22). This process
is repeated for the set of mesh points adjacent to the set of
mesh points where P and Q values have just been calcu-
lated. The final set of mesh points are the points of the
intersection of the Eikonal lines with the exit boundary of
the window function W.

V. NUMERICAL RESULTS FROM A SELECTED
EXAMPLE

Although this method has been applied by us to calcu-
late the performance of many devices such as the curved
grating lens, linear chirped grating lens, curved chirped
grating reflector, etc., the demonstration of this method
will only be presented here by showing the numerical
results obtained in a specific example. In this example, we
calculate the curved chirped grating lens diffracting an
incident Gaussian guided-wave beam into a focused guided-
wave beam with a focal point at x=0, y=0, as illustrated

in Fig. 2(c). In this case
4,=1
A=0.6328X10"°m
W=[u(y—0.002)—u(y—0.004)]

[u(x+20.0325x10?)
—u(x+19.9675x103)]
Py=1293exp| — (y—3x107*) cos?6, /10 ]
A, =1/r172
¢, =cosf x+sinb,y
T=kyn,r(1+cos)
a=10m™!

where u is a unit step function, u(v)=0 for v<0 and
u(v)=1 for v=0. We have used a ¢(z) and Ae(z) for a
glass waveguide such that n, =1.53 and K;=0.024, um™!
and we have chosen the Eikonal lines to be approximately
1 pm apart.

Fig. 4 shows the calculated value of the amplitude of Q
at the exit boundary, x=—19.9675x 10 ~> m and 0.002<y
<<0.004 m, for four different cases, 8, =0 in case a, §, =0.01
radian in case b, 6, =0.02 radian in case ¢, and 6,=0.03
radian in case d. Fig. 5 shows the calculated phase of jQ at
the same boundary. Notice that the phase of jQ for case a
is always zero because the grating is designed to provide
perfect phase match for that case. As the §, is deviated
further away from the phase matched condition, the phase
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Fig. 5. Calculated phase deviation of the diffracted wave at the exit
boundary of the grating region.

of jO changes much more rapidly. Figs. 6 to 9 show the
calculated amplitude of the electric field as a function of y
in the x=0 plane, i.e., the focal plane. Such an electric field
has been calculated by means of the Kirchhoff’s diffraction
integral using the Fresnel approximation. Notice the de-
gradation of the diffracted pattern as the 8, moves away
from the phase matching angle.

VL

We have presented in this paper a generalized two-
dimensional coupled-mode analysis of two generalized
guided-wave beams in a planar waveguide coupled by a
chirped and curved grating. From this analysis, we have
obtained the generalized phase matching condition that
can be used to design the grating groove shape for any two
given guided-wave beams. Alternatively, we can use the
coupled-mode equation to calculate the phase and ampli-
tude distributions of the two beams when there is a phase
mismatch. From the calculated amplitude and phase distri-
bution, we can obtain information such as the diffracted
field patterns, the diffraction efficiency, the angular range
of the incident beam propagation within which effective
diffraction can take place, the effect of changing the beam
shape of the incident beam (e.g., a Gaussian beam instead
of a plane wave), and the effect of changing the grating
parameter (e.g., changing the K coefficient or the curva-
ture).

However, this analysis has several limitations. First, we
have confined our analysis to the case of a single mode
waveguide with negligible radiation loss. Secondly, only a
limited amount of mismatch can be handled by this analy-
sis. This is because we have considered the amplitude
functions P and Q to be slow varying functions within a
wavelength of the guided mode, so that terms containing
the second derivatives of P and Q can be neglected in (16)

DiscussioN

and (18). It can be shown that the second derivatives of P
and Q are negligible whenever [1—(V ¢,- V¢,)]<1. In
most cases, this is not a severe restriction. In all the
examples of the grating lens that we have calculated so far,
[1—(V ¢,- V¢,)] has not-exceeded 10 2. On the other
hand, we have found that the condition for negligible
excitation of the substrate radiation mode by the chirped
grating structure is often violated before the violation of
this condition.

This analysis has already been applied to calculate the
performance of Fresnel and chirped grating lenses. Experi-
mental work to verify the calculated results is currently
being undertaken in our laboratory. It will be published
elsewhere.

APPENDIX A:
MATHEMATICAL STEPS IN THE
DERIVATION OF THE COUPLED-MODE EQUATION

From (2), (5), (8b), (9), and (10), we obtain
{(vXvX[P(x, Y)Eg]}-ip
=[Prie(z)~PKin*(1-v ¢ v ¢)

+2jkon (v P-v ¢)] Ep (A1)
(VX VX[P(x,y)Ey]}
=| Pkle(z)—Pkin2(1—-voé- V)
+j(kone+k°;(z) )(VP-vqb)]EM (A2)

where
ip=E;/Eg.
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We have neglected terms of the magnitude of ing the terms that have the same x and y variations in the
(VvA/kyn A) and [1— vV ¢V ¢1(dF,, /dz) /kon F,. Sub- exponential factor, neglecting the terms containing second
stituting (12) into (1), making use of (13) and (Al), equat- derivatives of functions P and Q as they are considered to
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be higher order small quantities, we obtain for the gener-

alized TE guided-wave beams.
(E XNV PV +aP )4 Fy+(i, XV ,)

ik
’ (%;g_ )W(X, )’)QAf(Z)AzFE

+ vector quantities perpendicular to (i, X vV ¢,)

=0 (A3)

(i,Xve, ) (VQ- Vo, taQ)A,Fp+(i, XV ¢,)
. (jkog

y )W(x, y)PAe(z)A, Fy

e

) Jkon,
+(i, ¥ V‘i’z)(_%_ )[I_V‘i’z' V ¢, 104, Fy
+ vector quantities perpendicular to (i, X V ¢, )

=0. (A4)

Here, g is the coefficient given in (11b) and we have
assumed that the size of the area within which the window
function is not zero is large so that terms of the same x and
y variation in the exponential factor must be equal to each
other. Following Kogelnik {10] and Kenan [11}, forming an
inner product between the quantities in (A3) and F(i, X
V ¢,) and integrating with respect to dz from z=—o0 to
z=-+ 00, we obtain (16a) when W(x, y)=1. Forming an
inner product between the quantities in (A4) and FE(i, X
V ¢,) and integrating with respect to dz from z=— o0 to

z=+ 00, we obtain (16b) when W(x, y)=1.

A similar procedure is used to derive equation (18) for

the generalized TM guided-wave beams, where

+ 00
Ky=1ikog[ ~Ae(z)| FyF,
1 (OF% \[0F,
+k3n§( 8z )( oz )V¢1'V¢Z]dz}

/ {4nef+oo

FyiFy

o0

| (9F} \[8F,
a7 )5 )]dz}'

As the second term is much smaller than the first term, we

can use the approximate expression as given in (19a).
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Aperture Coupling Between D1e1ectr1c Image
Lines

INDER J. BAHL, SENIOR MEMBER, IEEE, AND PRAKASH BHARTIA, SENIOR MEMBER, IEEE

A bstract— Aperture coupling between dielectric image lines is used to
develop a design technique for directional couplers at millimeter-wave
frequencies. Expressions for coupling coefficients and directivity, employ-
ing coupling between image lines through apertures in the common ground
plane are developed. The design procedure is illustrated by application to
10-, 20-, and 30-dB directional couplers in rectangular image lines w1tl1

circular aperture coupling.

]: IELECTRIC IMAGE lines and their applications in
active and passive devices for millimeter-wave in-

tegrated circuits have been reported in the literature [1]}-[9].

I. - INTRODUCTION

Manuscript received December 16, 1980; revised April 27, 1981. This
work was supported by the Natural Sciences and Engineering Research
Courcil of Canada under Grant A-0001.

1. J. Bahl is with the Department of Electrical Engineering, University
of Ottawa, Canada KIN 6NS5. )

P. Bhartia is with the Defence Electronics Dmsron Defence Research
Establishment, Ottawa, Canada K1A 0Z4.

In this paper a design technique for directional couplers
using dielectric image lines is given. Initially, a brief account
of transmission-line properties of the dielectric image line
is presented together with coupling between image lines
through apertures in the common ground plane. Expres-
sions are derived for the directivity and coupling coeffi-
cients and design curves are presented. Finally, the design
procedure developed 'is illustrated by application to the
design of 10-, 20-, and 30-dB directional couplers.

II. IMAGE-LINE PROPERTIES

The geometry of an image line, as shown in Fig. 1,
comprises a rectangular dielectric slab of relative permittiv-
ity €, backed by a perfectly conducting ground plane. The
main transverse field components of the E),, modes are E,
and H,. Omitting the r—z dependence, exp [ j(wt—k,z)],
where w is the angular frequency and k, is the propagation
constant in the z direction; the field components inside and
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